
got HW crypto? On the (in)security of a Self-Encrypting Drive series

计分子操作 医骨骨 医小子 医小子 法 医外外的 医子宫 医神经炎 医子宫的过去式 化化化物

Research motivation

is HW crypto more secure?

Speakers intro

Gunnar Alendal:

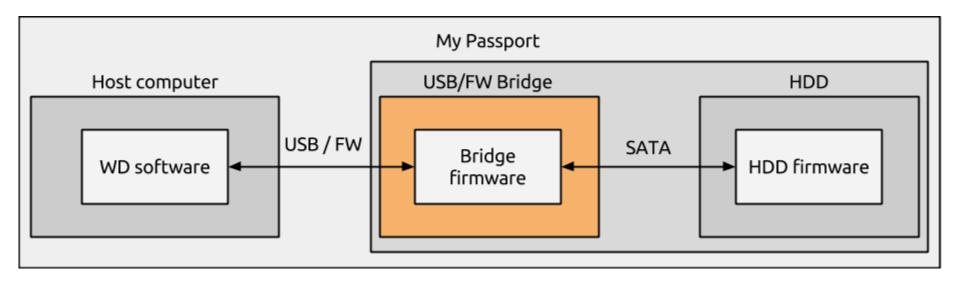
Master's degree in Cryptography from the University of Bergen, UiB, Norway.

Reverse engineering anything with an opcode; x86, x64, ARM, MIPS, M68k, ARC, 8051, ..

Security researcher with 15 years of professional experience.

Christian Kison:

Holds a Master's degree in Informations- Systemtechnik from the TU Braunschweig , Brunswick, Germany.


Started PhD December 2014.

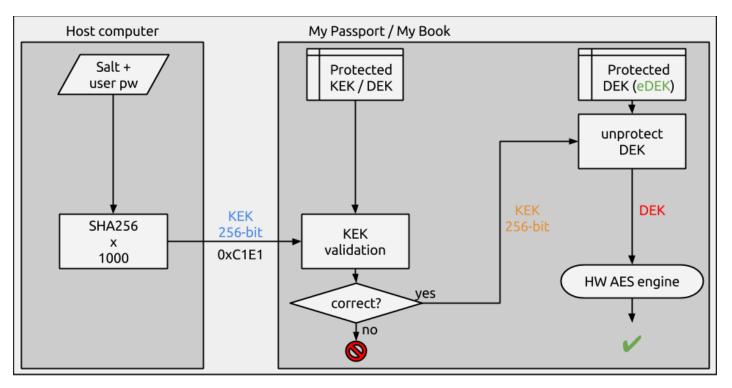
Main research topic involve Side Channel Analysis, physical attacks, silicon and digital forensic and hardware reversing approaches.

Western Digital My Passport / Book

- Self-encrypting external HDD series*
- crypto done in either:
 - 1. 1st-gen : USB/FW-to-SATA bridge
 - 2. 2nd-gen : HDD itself
- Can't fit everything in talk \Rightarrow read full paper

Generic setup

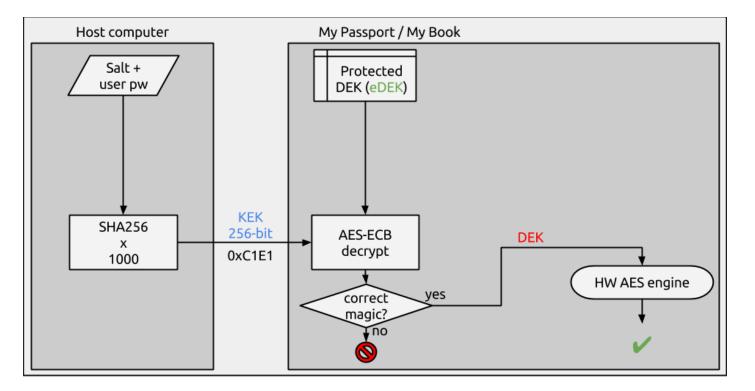
Different USB bridges researched


Vendor	Model (1st-gen/2nd-gen)	Architecture
JMicron	JMS538S	Intel 8051
Symwave	SW6316	Motorola M68k
PLX	OXUF943SE	ARM7
Initio	INIC-1607E	Intel 8051
Initio	INIC-3608	ARC 600
JMicron	JMS569	Intel 8051

Overall security design

- User PW \Rightarrow Key-Encryption-Key (KEK):
 - KDF(salt+PW) = KEK
 salt + KDF iterations are constant in SW
- KEK protects Data-Encryption-Key (DEK)
- **DEK** = holy long-term HW AES Key

1st-gen bridges w/AES


Overall security design

The protected DEK - eDEK

- a KEK-encrypted blob containing the raw DEK
- eDEK stored on disk + USB bridge EEPROM
 EEPROM is marked "U14" on most PCBs
- retrieve eDEK ⇒ off-device pw brute force

Authentication - JMS538S/INIC-1607E

Mandatory HW encryption

● No PW set ⇔ *hardcoded* KEK unlocks DEK

• Hardcoded KEK = "**PI**" AES-256 key

03 14 15 92 65 35 89 79 32 38 46 26 43 38 32 79 FC EB EA 6D 9A CA 76 86 CD C7 B9 D9 BC C7 CD 86

data recovery

- no pw + broken USB bridge? no problem:
 - eDEK stored on HDD + EEPROM
 - decrypt eDEK with "PI" KEK \Rightarrow DEK decrypts HDD

- pw set? off-device brute force
 - Constant salt + KDF iteration counter
 - GPU-impl. benchmark: ~1 mill pw/s (single card)

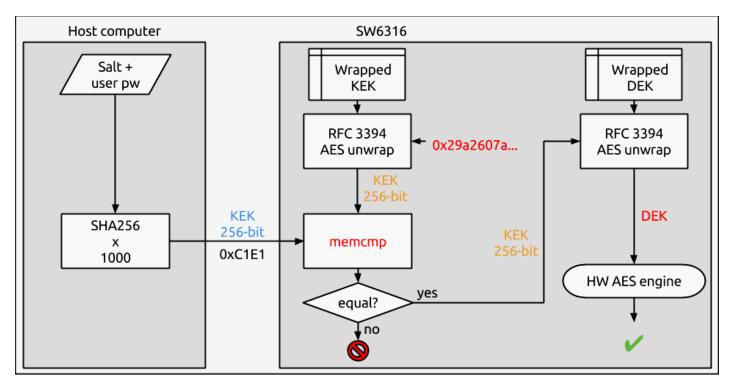
Retrieve the eDEK: "no eeprom for you"

- no EEPROM on boot..
- \Rightarrow raw USB-to-SATA
 - bridge or "DFU mode"
- \Rightarrow read eDEK from HDD

VID/PID: 1058/0748 Bridge: JMS538S

- **Retrieve the eDEK**
- JMS538S "no eeprom for you"
- SW6316 PC-3k / "no eeprom for you"
- OXUF943SE SATA + hidden eDEK sector
- INIC-1607E "no eeprom for you" + 3-byte

FW patch to dump eDEK


Attackers progress...

Model	no pw set, recovery	pw brute force	break auth.	crack DEK
JMS538S	 ✓ 	 Image: A second s		
SW6316	<i>✓</i>	1		
OXUF943SE	✓	✓		
INIC-1607E	✓			

Breaking auth. - aka. backdoors

- Two 1st-gen chips fail on authentication
- SW6316 stores the KEK in EEPROM/HDD
 - Protection: Hardcoded key (0x29A2607A..)
- OXUF943SE saves a "PI" encrypted eDEK
 - Protection: Hardcoded key (0x03141592..)

SW6316 authentication/backdoor

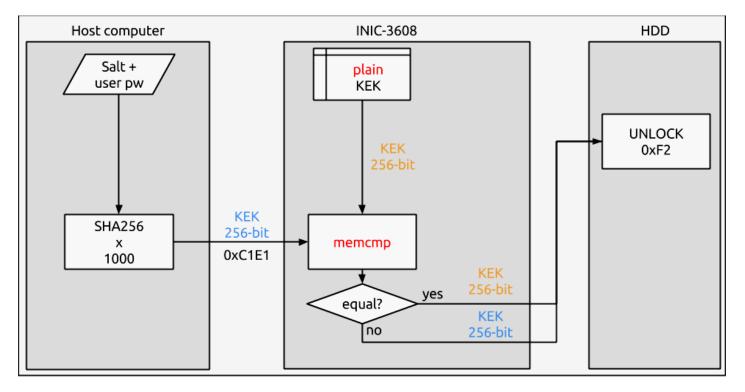
Attackers progress...

Model	no pw set, recovery	pw brute force	break auth.	crack DEK
JMS538S	✓	✓		
SW6316	<i>✓</i>	✓	1	
OXUF943SE	√	✓		
INIC-1607E	✓	✓		

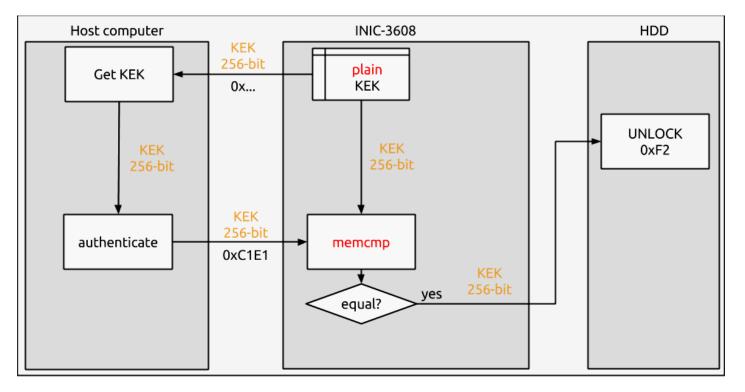
..but before we crack DEKs:

2nd-gen bridges with no AES

Initio INIC-3608 / JMicron JMS 569


- no HW AES in USB bridge
- HDD does crypto:
 - "ATA Security feature Set"; ATA 0xF1, 0xF2, ...
- VSC "status" (0xC045) reports only cipher mode 0x30 (FDE)

INIC-3608 backdoor


- INIC-3608 does authentication, no crypto
- EEPROM, U14, contains the raw KEK(!)
- Dump EEPROM \Rightarrow Get KEK \Rightarrow authenticate
- ..or get KEK with secret VSC ⇒ authenticate

http://hardwear.io

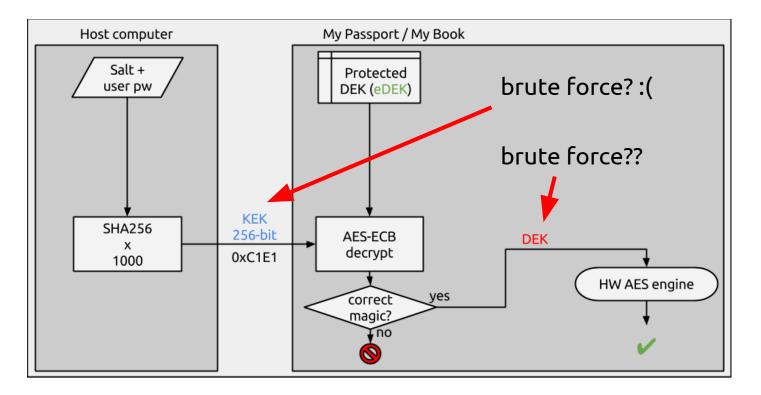
INIC-3608 authentication

INIC-3608 backdoor

INIC-3608 Backdoor DEMO

JMicron JMS569

- Connect to pc3k in kernel-mode
 - Get privileges as always by bit shifting
 - Erase ATA-module XX
 - HDD unlocks, decrypting everything on the fly


By now, pc3k found their own way
 Details in the forums

Attackers progress...

Model	no pw set, recovery	pw brute force	break auth.	crack DEK
JMS538S	✓	✓		
SW6316	✓	1	1	
OXUF943SE	1	1	1	
INIC-1607E	1	1		
INIC-3608	1	1	1	
JMS569	1		1	

JMS538S and INIC-1607E still standing tall*

Recap: Authentication - JMS538S

Crack DEK directly?

• How is the HW AES-256 DEK created?

• Entropy source?

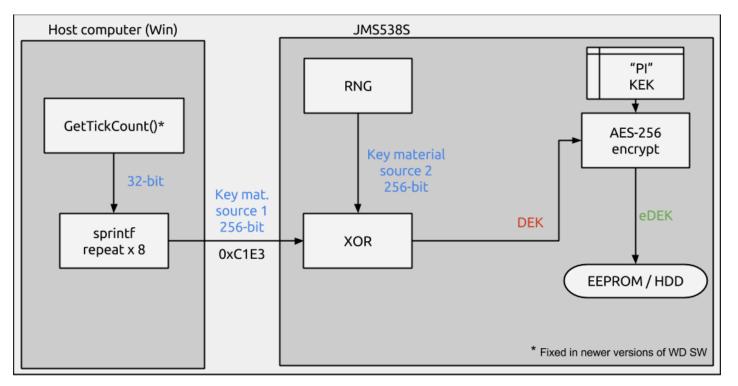
• can we beat a 2²⁵⁶ complexity?

DEK creation \Rightarrow device "erase"

How is the DEK created on a device "erase"?
 o aka. "I forgot my password"

• Entropy source(s)?

 Can we assume the factory uses this "erase" command?


DEK creation by device "erase"

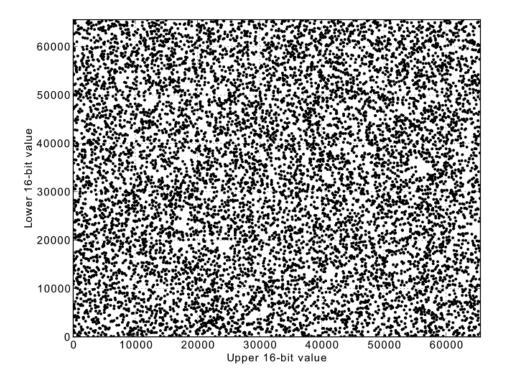
• "erase" VSC: CDB[0:1] = 0xC1E3

- 2 entropy sources:
 - \circ host computer \Rightarrow Key material source 1
 - \circ on-board RNG \Rightarrow Key material source 2

http://hardwear.io

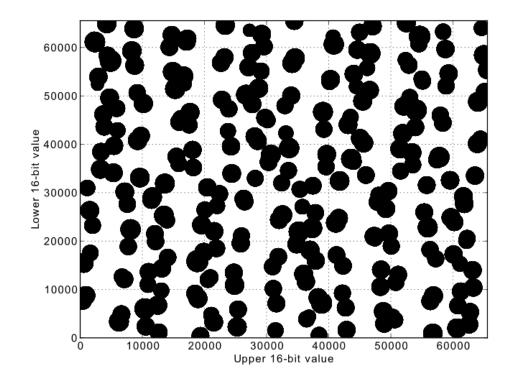
JMS538S "erase" VSC

JMS538S on-board RNG


• Implemented in chip "somewhere"

• Gather samples and plot

 Gather by "status" (4 bytes) or "erase" (32 bytes) VSC


http://hardwear.io

/dev/urandom - 32-bit x 10 000

http://hardwear.io

JMS538S "status" unmask x 10 000

JMS538S on-board RNG

- "status" command masks RNG output:
 - xor with 0x271828af
- "erase" uses raw RNG no mask

 RNG turns out to be a 8-bit LFSR with period 255

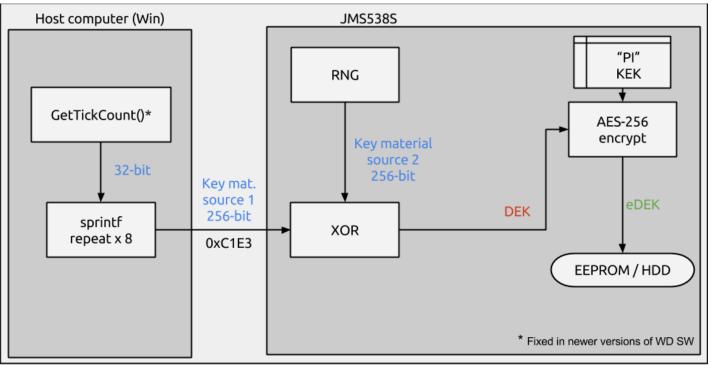
JMS538S on-board RNG

• ...eh, a RNG with period of 255?!

• ...adding a poor ~2⁸ to the complexity!

 ..so we have total 2³² x ~2⁸ = ~2⁴⁰ complexity!

JMS538S "erase" attack


• You erase the drive + set sooper pw

We recover the DEK with 2⁴⁰ complexity
 ~2³⁶ if set from a MAC

• ...done in "no time" on any computer

http://hardwear.io

JMS538S "erase" VSC

JMS538S factory keys

• "most people don't erase their drives"

• ...so what about the factory set DEKs?

• Does the factory use the "erase" command?

JMS538S factory keys analysis

- Grab factory set DEK from an eDEK + reverse the "erase" command flow
- Generate 255 possible "Host provided key material" (source 1)
- Find the correct one by guessing...?

JMS538S factory keys - RNG leak

• The default out-of-the-box eDEK leaks

 Decrypted eDEK leaks RNG status at creation time

• ... which is the same time as **DEK** creation!

decrypted factory eDEK - RNG leak

Magic	0x00:	"DEK1" factory DEK				
CRC	0x04:	3f97				
Unknown	0x06:	0000				
random1	0x08:	b1f065be 🦰				
key 0x3ee2 128 bit	0x0c:	dde91629a8f503a41847e9956386a5d3				
random2	0x1c:	2aa98576				
key 0x3ef2 128 bit	0x20:	fea9c0d0ad395397772420a0563a604b				
random3	0x30:	074195db				
key 0x3f02 256 bit	0x34:					
3b00e300f7002700e1004d003800040069003e00d70048000c00bb0042006400						
random4	0x54:	8e832cf3				
key size (byte)	0x58:	20 => 256 bits				
Unknown	0x59:	000000000000				
		RNG status leak				

JMS538S factory keys - RNG leak

- The default out-of-the-box eDEK says it all
- It gives the raw DEK
- + the *state of the RNG* after **DEK** creation

• \Rightarrow We know the host provided key material!

example host provided key material

Raw stream: 14 F9 DD 69 49 81 D4 63 CE 22 30 51 23 1B 2C 18 28 3B 3D 15 0F 3F 98 39 E4 C3 1F 4A 57 F3 9A 79

Little endian, 32-bit values: 69DDF914 63D48149 513022CE 182C1B23 153D3B28 39983F0F 4A1FC3E4 799AF357

srand(0x4fd45d3f) \Leftarrow Seed with this...rand() \Rightarrow 69DDF914 \Leftarrow ... and get theserand() \Rightarrow 63D48149 \Leftarrow ...

• •

rand() \Rightarrow 799AF357 \leftarrow ...


example host provided key material

- srand(0x4fd45d3f) is the entropy source
- $0x4fd45d3f \Rightarrow UNIX time$
- $0x4fd45d3f \Rightarrow 2012-06-10\ 08:39:27\ UTC$
- It was on a Sunday ...and it was sunny

DEK created: 10 JUN 2012 08:39:27 UTC

Ouch!

HDDs have a printed production date..

JMS538S factory DEK attack

 a single 128-bit known-plaintext AES block needed from HDD ⇒e.g. E_{DEK}(00..00)

- Recover the 256-bit DEK with 2³⁶ complexity:
 - Brute force creation time (2007 2015) + RNG state

JMS538S factory DEK attack

• ...done in "no time" on any computer

- ..or **instant** with a 1.2 TB lookup-table!
 - pre-gen all 2³⁶ possible factory DEKs
 - store E_{DEK}(00..00) + seed + RNG idx

JMS538S factory DEK attack DEMO

Attackers progress...

Model	no pw set, recovery	pw brute force	break auth.	crack DEK
JMS538S	✓	✓		 ✓
SW6316	✓	1	1	
OXUF943SE	1	1	1	
INIC-1607E	1	1		(✓)
INIC-3608	1	1	1	
JMS569	✓		1	

badUSB and evil-maid?

No FW signing \Rightarrow security problems

- can patch FW devices, pre authentication ⇒ bad, bad USB
- ..resulting in spreading of evilness
 - malware in 8051, M68k and ARC. Infect-on-the-fly.
 - no easy clean (self-protecting evil FW)
 - add crypto backdoor
 - nullifying poor auth. schemes

Summary

- All 6 bridges analyzed had serious security vulnerabilities
- 3 bridges have **backdoors**, 2 weak key setup, 1 broken auth.
- All 6 vulnerable to unauthorized FW patching ⇒ badUSB, evil-maid, ..

Thank You, WD and EFF

Questions?